Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.114
Filtrar
1.
Commun Biol ; 7(1): 405, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570628

RESUMO

Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal amplitude, but not rhythmicity or 'oscillatoriness' per se. Here we introduce a new approach, the phase-autocorrelation function (pACF), for the direct quantification of rhythmicity. We applied pACF to human intracerebral stereoelectroencephalography (SEEG) and magnetoencephalography (MEG) data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks and to be dynamically modulated during event-related processing. We also extended the pACF approach to measure 'burstiness' of oscillatory processes and characterized regions with stable and bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.


Assuntos
Magnetoencefalografia , Periodicidade , Humanos , Magnetoencefalografia/métodos , Neurônios/fisiologia , Técnicas Estereotáxicas , Atenção/fisiologia
2.
Arch Psychiatr Nurs ; 48: 68-73, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38453284

RESUMO

INTRODUCTION: The disruption of biological rhythm (sleep, eating patterns, hormonal secretions, activities, and social life etc.) in individuals diagnosed with bipolar disorder makes it challenging to balance the mood of the patient and facilitates recurrence. Although social support, coping with stress, and medication adherence are known to affect prognosis, no study has been found to investigate the relationship between these factors and biological rhythm. AIM: This descriptive and correlational design study investigated the relationship between perceived social support, coping styles and medication adherence, and biological rhythm in individuals diagnosed with bipolar disorder. METHOD: This study was conducted with 111 patients receiving treatment in the outpatient clinics of the psychiatry department of two public hospitals in Ankara, Turkey. Biological Rhythm Interview of Assessment in Neuropsychiatry (BRIAN), Multidimensional Scale of Perceived Social Support (MSPSS), Coping Style Inventory (CSI), and Morisky Medication Adherence Scale (MMAS) were used for data collection. RESULTS: The biological rhythm total and subscales scores were significantly and negatively related to perceived social support total, and subscales scores (p < 0.005). The biological rhythm total and most of its subscales scores were significantly and negatively related to medication adherence (p < 0.005). The biological rhythm total and domain scores were significantly and negatively related to seeking social support, self-confident, and optimistic subscales of CSI while significantly and positively related to helpless and submissive (p < 0.005). DISCUSSION: In this study, a positive relationship was found between increased perceived social support, effective coping with stress, and adherence to medication. This study highlights that these factors may be helpful for the regulation of biological rhythm.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/tratamento farmacológico , Turquia , Adesão à Medicação , 60670 , Apoio Social , Periodicidade , Adaptação Psicológica
3.
Cortex ; 174: 137-148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547812

RESUMO

Attention is not constant but rather fluctuates over time and these attentional fluctuations may prioritize the processing of certain events over others. In music listening, the pleasurable urge to move to music (termed 'groove' by music psychologists) offers a particularly convenient case study of oscillatory attention because it engenders synchronous and oscillatory movements which also vary predictably with stimulus complexity. In this study, we simultaneously recorded pupillometry and scalp electroencephalography (EEG) from participants while they listened to drumbeats of varying complexity that they rated in terms of groove afterwards. Using the intertrial phase coherence of the beat frequency, we found that while subjects were listening, their pupil activity became entrained to the beat of the drumbeats and this entrained attention persisted in the EEG even as subjects imagined the drumbeats continuing through subsequent silent periods. This entrainment in both the pupillometry and EEG worsened with increasing rhythmic complexity, indicating poorer sensory precision as the beat became more obscured. Additionally, sustained pupil dilations revealed the expected, inverted U-shaped relationship between rhythmic complexity and groove ratings. Taken together, this work bridges oscillatory attention to rhythmic complexity in relation to musical groove.


Assuntos
Percepção Auditiva , Música , Humanos , Estimulação Acústica , Eletroencefalografia , Periodicidade , Movimento
4.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377290

RESUMO

The outbreak of infectious diseases often exhibits periodicity, and this periodic behavior can be mathematically represented as a limit cycle. However, the periodic behavior has rarely been considered in demonstrating the cluster phenomenon of infection induced by diffusion (the instability modes) in the SIR model. We investigate the emergence of Turing instability from a stable equilibrium and a limit cycle to illustrate the dynamical and biological mechanisms of pattern formation. We identify the Hopf bifurcation to demonstrate the existence of a stable limit cycle using First Lyapunov coefficient in our spatiotemporal diffusion-driven SIR model. The competition between different instability modes induces different types of patterns and eventually spot patterns emerge as stable patterns. We investigate the impact of susceptible, infected, and recovered individuals on the type of patterns. Interestingly, these instability modes play a vital role in selecting the pattern formations, which is directly related to the number of observed spot patterns. Subsequently, we explain the dynamical and biological mechanisms of spot patterns to develop an effective epidemic prevention strategy.


Assuntos
Doenças Transmissíveis , Epidemias , Humanos , Simulação por Computador , Periodicidade , Doenças Transmissíveis/epidemiologia , Modelos Biológicos
5.
Cell Metab ; 36(4): 655-669, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335957

RESUMO

The finding that animals with circadian gene mutations exhibit diet-induced obesity and metabolic syndrome with hypoinsulinemia revealed a distinct role for the clock in the brain and peripheral tissues. Obesogenic diets disrupt rhythmic sleep/wake patterns, feeding behavior, and transcriptional networks, showing that metabolic signals reciprocally control the clock. Providing access to high-fat diet only during the sleep phase (light period) in mice accelerates weight gain, whereas isocaloric time-restricted feeding during the active period enhances energy expenditure due to circadian induction of adipose thermogenesis. This perspective focuses on advances and unanswered questions in understanding the interorgan circadian control of healthful metabolism.


Assuntos
Relógios Circadianos , Síndrome Metabólica , Camundongos , Animais , Obesidade/metabolismo , Aumento de Peso , Periodicidade , Adiposidade , Metabolismo Energético , Ritmo Circadiano , Relógios Circadianos/genética
6.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253583

RESUMO

The neural mechanisms underlying the exogenous coding and neural entrainment to repetitive auditory stimuli have seen a recent surge of interest. However, few studies have characterized how parametric changes in stimulus presentation alter entrained responses. We examined the degree to which the brain entrains to repeated speech (i.e., /ba/) and nonspeech (i.e., click) sounds using phase-locking value (PLV) analysis applied to multichannel human electroencephalogram (EEG) data. Passive cortico-acoustic tracking was investigated in N = 24 normal young adults utilizing EEG source analyses that isolated neural activity stemming from both auditory temporal cortices. We parametrically manipulated the rate and periodicity of repetitive, continuous speech and click stimuli to investigate how speed and jitter in ongoing sound streams affect oscillatory entrainment. Neuronal synchronization to speech was enhanced at 4.5 Hz (the putative universal rate of speech) and showed a differential pattern to that of clicks, particularly at higher rates. PLV to speech decreased with increasing jitter but remained superior to clicks. Surprisingly, PLV entrainment to clicks was invariant to periodicity manipulations. Our findings provide evidence that the brain's neural entrainment to complex sounds is enhanced and more sensitized when processing speech-like stimuli, even at the syllable level, relative to nonspeech sounds. The fact that this specialization is apparent even under passive listening suggests a priority of the auditory system for synchronizing to behaviorally relevant signals.


Assuntos
Córtex Auditivo , Percepção da Fala , Adulto Jovem , Humanos , Estimulação Acústica , Percepção da Fala/fisiologia , Som , Eletroencefalografia , Periodicidade , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia
7.
PLoS Biol ; 22(1): e3002478, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289905

RESUMO

Biological rhythms have a crucial role in shaping the biology and ecology of organisms. Light pollution is known to disrupt these rhythms, and evidence is emerging that chemical pollutants can cause similar disruption. Conversely, biological rhythms can influence the effects and toxicity of chemicals. Thus, by drawing insights from the extensive study of biological rhythms in biomedical and light pollution research, we can greatly improve our understanding of chemical pollution. This Essay advocates for the integration of biological rhythmicity into chemical pollution research to gain a more comprehensive understanding of how chemical pollutants affect wildlife and ecosystems. Despite historical barriers, recent experimental and technological advancements now facilitate the integration of biological rhythms into ecotoxicology, offering unprecedented, high-resolution data across spatiotemporal scales. Recognizing the importance of biological rhythms will be essential for understanding, predicting, and mitigating the complex ecological repercussions of chemical pollution.


Assuntos
Ecossistema , Poluentes Ambientais , Tempo , Poluição Ambiental/efeitos adversos , Periodicidade
8.
J Neurophysiol ; 131(2): 417-434, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197163

RESUMO

Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.


Assuntos
Braquiúros , Neurônios , Animais , Neurônios/fisiologia , Piloro/fisiologia , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Periodicidade , Rede Nervosa/fisiologia
9.
Ann Clin Biochem ; 61(1): 39-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37321968

RESUMO

BACKGROUND: Running means for total calcium (Ca) results at our laboratory exhibit a stable time-of-day (TOD) periodic pattern. We examined use of TOD-dependent targets for running means in patient-based quality control (PBQC) for Ca. METHODS: Primary data were Ca results over a 3 month interval, restricted to weekday data within the Ca reference interval (8.5-10.3 mg/dL; 2.12-2.57 mmol/L). Running means were evaluated as sliding averages of 20 samples (20-mers). RESULTS: Data comprised 39,629 consecutive Ca measurements (75.3% inpatient (IP)) for which Ca was 9.29±0.47 mg/dL. The all data average for 20-mers was 9.29 ± 0.18 mg/dL. When parsed in 1 h TOD intervals, however, averages among 20-mers ranged from 9.1 to 9.5 mg/dL, with blocs of contiguous results above (0800-2300 h; 53.3% of results; IP = 75.3%) and below (2300-0800 h; 46.7% of results; IP = 99.9%) the all-data mean. There was thus an inherent TOD-dependent pattern of deviation of means from target when using a fixed PBQC target. Using Fourier series analysis as an example approach, characterization of the pattern to produce TOD-dependent PBQC targets eliminated this inherent inaccuracy. CONCLUSIONS: In circumstances of periodic variation in running means, simple characterization of that variation can reduce the probability of both false positive and false negative flags in PBQC.


Assuntos
Cálcio , Periodicidade , Controle de Qualidade , Humanos , Valores de Referência , Cálcio/sangue
10.
Neurosci Lett ; 819: 137578, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38048875

RESUMO

Persistent post-ischemic alterations to the hypothalamic-pituitary-adrenal (HPA) axis occur following global cerebral ischemia (GCI) in rodents. However, similar effects on hypothalamic-pituitary-gonadal (HPG) axis activation remain to be determined. Therefore, this study evaluated the effects of GCI in adult female rats (via four-vessel occlusion) on the regularity of the estrous cycle for 24-days post ischemia. A second objective aimed to assess persistent alterations of HPG axis activation through determination of the expression of estrogen receptor alpha (ERα), kisspeptin (Kiss1), and gonadotropin-inhibitory hormone (GnIH/RFamide-related peptide; RFRP3) in the medial preoptic area (POA), arcuate nucleus (ARC), dorsomedial nucleus (DMH) of the hypothalamus, and CA1 of the hippocampus 25 days post ischemia. Expression of glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN) and CA1 served as a proxy of altered HPA axis activation. Our findings demonstrated interruption of the estrous cycle in 87.5 % of ischemic rats, marked by persistent diestrus, lasting on average 11.86 days. Moreover, compared to sham-operated controls, ischemic female rats showed reduced Kiss1 expression in the hypothalamic ARC and POA, concomitant with elevated ERα in the ARC and increased GnIH in the DMH and CA1. Reduced GR expression in the CA1 was associated with increased GR-immunoreactivity in the PVN, indicative of lasting dysregulation of HPA axis activation. Together, these findings demonstrate GCI disruption of female rats' estrous cycle over multiple days, with a lasting impact on HPG axis regulators within the reproductive axis.


Assuntos
Isquemia Encefálica , Sistema Hipotálamo-Hipofisário , Ratos , Feminino , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Kisspeptinas/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal , Receptor alfa de Estrogênio/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hipotálamo/metabolismo , Ciclo Estral/metabolismo , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Periodicidade
11.
Addict Behav ; 150: 107906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984222

RESUMO

Sleep is an important physiological process, but staying up late has become a worldwide problem, particularly among university students. Sleep procrastination has been found to associated with sleep biorhythms and problematic smartphone use ("PSU") in previous studies. This two-wave study examines the longitudinal reciprocal relationship between PSU and sleep procrastination, together with the moderating role of sleep biorhythms. Participants comprised 1,423 Chinese university students. The results revealed that PSU and sleep procrastination are reciprocally related. Additionally, sleep biorhythms moderated this relationship, as PSU at T1 significantly predicted sleep procrastination at T2 for the morning larks group but not the night owls group. Accordingly, both PSU and sleep biorhythms should be considered when developing interventions for sleep procrastination.


Assuntos
Periodicidade , Sono , Smartphone , Humanos , Sono/fisiologia , Estudantes , População do Leste Asiático
12.
Cognition ; 243: 105670, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016227

RESUMO

Newborn infants have been shown to extract temporal regularities from sound sequences, both in the form of learning regular sequential properties, and extracting periodicity in the input, commonly referred to as a regular pulse or the 'beat'. However, these two types of regularities are often indistinguishable in isochronous sequences, as both statistical learning and beat perception can be elicited by the regular alternation of accented and unaccented sounds. Here, we manipulated the isochrony of sound sequences in order to disentangle statistical learning from beat perception in sleeping newborn infants in an EEG experiment, as previously done in adults and macaque monkeys. We used a binary accented sequence that induces a beat when presented with isochronous timing, but not when presented with randomly jittered timing. We compared mismatch responses to infrequent deviants falling on either accented or unaccented (i.e., odd and even) positions. Results showed a clear difference between metrical positions in the isochronous sequence, but not in the equivalent jittered sequence. This suggests that beat processing is present in newborns. Despite previous evidence for statistical learning in newborns the effects of this ability were not detected in the jittered condition. These results show that statistical learning by itself does not fully explain beat processing in newborn infants.


Assuntos
Percepção Auditiva , Música , Humanos , Recém-Nascido , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Periodicidade
13.
Br J Nutr ; 131(3): 447-460, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578022

RESUMO

The present study investigated the potential role of the composition of dietary fatty acids in the regulation of biological rhythms, such as the sleep architecture, core body temperature and leukocyte clock gene expression, in subjects fed meals rich in palmitic acid (PA) or oleic acid (OA). Eleven males participated in two sessions of indirect calorimetry in a whole-room metabolic chamber. In each session, subjects consumed three meals rich in PA (44·3 % of total fat as PA and 42·3 % as OA) or OA (11·7 % of total fat as PA and 59·3 % as OA) in the metabolic chamber. The ratio of PA to OA in plasma was significantly lower and fat oxidation was significantly higher during 24 h of indirect calorimetry in the session with meals rich in OA than in that with meals rich in PA. The duration of slow wave sleep (SWS) was shorter, the latency of SWS was longer and the nadir of core body temperature after bedtime was later in the session with meals rich in PA than in that with meals rich in OA. The peak in CRY1 gene expression was earlier and its amplitude was higher in the session with meals rich in PA than in that with meals rich in OA. In healthy young males, meals rich in PA decreased fat oxidation and disrupted biological rhythms, particularly the sleep architecture and core body temperature during sleep, more than meals rich in OA.


Assuntos
Ácido Oleico , Ácido Palmítico , Masculino , Humanos , Japão , Metabolismo Energético , Periodicidade , Gorduras na Dieta/metabolismo
15.
Biol Psychol ; 185: 108728, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092221

RESUMO

Research on respiratory sinus arrhythmia, or high-frequency heart rate variability (its frequency-domain equivalent), has been popular in psychology and the behavioral sciences for some time. It is typically interpreted as an indicator of cardiac vagal activity. However, as research has shown for decades, the respiratory pattern can influence the amplitude of these noninvasive measures substantially, without necessarily reflecting changes in tonic cardiac vagal activity. Although changes in respiration are systematically associated with experiential and behavioral states, this potential confound in the interpretation of RSA, or HF-HRV, is rarely considered. Interpretations of within-individual changes in these parameters are therefore only conclusive if undertaken relative to the breathing pattern. The interpretation of absolute levels of these parameters between individuals is additionally burdened with the problem of residual inspiratory cardiac vagal activity in humans. Furthermore, multiple demographic, anthropometric, life-style, health, and medication variables can act as relevant third variables that might explain associations of RSA or HF-HRV with experiential and behavioral variables. Because vagal activity measured by these parameters only represents the portion of cardiac vagal outflow that is modulated by the respiratory rhythm, alternative interpretations beyond cardiac vagal activity should be considered. Accumulating research shows that activity of multiple populations of neurons in the brain and the periphery, and with that organ activity and function, are modulated rhythmically by respiratory activity. Thus, observable health benefits ascribed to the cardiac vagal system through RSA or HF-HRV may actually reflect beneficial effects of respiratory modulation. Respiratory rhythmicity may ultimately provide the mechanism that integrates central, autonomic, and visceral activities.


Assuntos
Arritmia Sinusal Respiratória , Humanos , Frequência Cardíaca/fisiologia , Arritmia Sinusal , Respiração , Coração , Nervo Vago/fisiologia , Periodicidade
16.
Nature ; 625(7994): 338-344, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123682

RESUMO

The medial entorhinal cortex (MEC) hosts many of the brain's circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience1. Whereas location is known to be encoded by spatially tuned cell types in this brain region2,3, little is known about how the activity of entorhinal cells is tied together over time at behaviourally relevant time scales, in the second-to-minute regime. Here we show that MEC neuronal activity has the capacity to be organized into ultraslow oscillations, with periods ranging from tens of seconds to minutes. During these oscillations, the activity is further organized into periodic sequences. Oscillatory sequences manifested while mice ran at free pace on a rotating wheel in darkness, with no change in location or running direction and no scheduled rewards. The sequences involved nearly the entire cell population, and transcended epochs of immobility. Similar sequences were not observed in neighbouring parasubiculum or in visual cortex. Ultraslow oscillatory sequences in MEC may have the potential to couple neurons and circuits across extended time scales and serve as a template for new sequence formation during navigation and episodic memory formation.


Assuntos
Córtex Entorrinal , Neurônios , Periodicidade , Animais , Camundongos , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Giro Para-Hipocampal/fisiologia , Corrida/fisiologia , Fatores de Tempo , Escuridão , Córtex Visual/fisiologia , Vias Neurais , Navegação Espacial/fisiologia , Memória Episódica
17.
PeerJ ; 11: e15991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077430

RESUMO

Snappers (family Lutjanidae) are important fisheries target species and some species are known to form spawning aggregations at particular spawning grounds. The present study investigated the ecological characteristics of fish aggregations of two snapper species (checkered snapper Lutjanus decussatus and blackspot snapper L. fulviflamma) that form at a particular site. Specifically, the aims were to clarify (1) seasonality and lunar-phase periodicity of fish aggregation formation, (2) fine-scale spatial distribution of fish density (spatial variations of fish density at intervals of several-tens meters) within the aggregation site, (3) size and age frequency distributions of fishes in the aggregation site, (4) gonad development, (5) to compare fish abundance between inside and outside the aggregation site, and (6) to verify that fish aggregations of the two snapper species were spawning aggregation. Underwater observations using a 600 m × 5 m transect revealed that greater fish abundance of Lutjanus decussatus was found monthly between May and October, and clear positive peaks in the fish abundance were found only around the last-quarter moon. This lunar-related periodicity in the increase of fish abundance was confirmed by a time-series analysis (correlogram). Within the aggregation site, L. decussatus showed a relatively uniform distribution. In contrast, greater fish abundance of L. fulviflamma was found monthly between April and October, and clear positive peaks in the fish abundance were found around the last-quarter moon (April, May, June and October) or new moon (July, August and September). This lunar-related periodicity was also confirmed by correlogram. Lutjanus fulviflamma showed a relatively clumped distribution within the aggregation site. Most females of the two species in the aggregation site had hydrated eggs, indicating that the two species form aggregations for reproduction. The two species, although occurring simultaneously, are considered to form aggregations of conspecifics only. For L. decussatus, average fork length and age of males and females were 229.2 mm and 243.9 mm and 9.4 years and 8.1 years, respectively. For L. fulviflamma, average fork length and age of males and females were 233.9 mm and 246.9 mm and 6.8 years and 8.1 years, respectively. Fish abundance inside the aggregation site was 266.8-fold and 141557.1-fold greater than those outside the aggregation site for L. decussatus and L. fulviflamma, respectively. These results showed that (1) fish aggregation formation of the two snapper species was predictably repeated in particular months and lunar-phase, (2) it was predictably found at the particular site, (3) the fish abundance in the aggregation site markedly exceeded the fish abundance outside the aggregation site, and (4) the two species form aggregations for reproduction. Therefore, it is suggested that the fish aggregations for the two species can be regarded as spawning aggregations.


Assuntos
Pesqueiros , Peixes , Reprodução , Animais , Feminino , Masculino , Peixes/fisiologia , Lua , Periodicidade
19.
Phys Rev E ; 108(5-1): 054409, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115462

RESUMO

Pancreatic beta cells are coupled excitable oscillators that synchronize their activity via different communication pathways. Their oscillatory activity manifests itself on multiple timescales and consists of bursting electrical activity, subsequent oscillations in the intracellular Ca^{2+}, as well as oscillations in metabolism and exocytosis. The coordination of the intricate activity on the multicellular level plays a key role in the regulation of physiological pulsatile insulin secretion and is incompletely understood. In this paper, we investigate theoretically the principles that give rise to the synchronized activity of beta cell populations by building up a phenomenological multicellular model that incorporates the basic features of beta cell dynamics. Specifically, the model is composed of coupled slow and fast oscillatory units that reflect metabolic processes and electrical activity, respectively. Using a realistic description of the intercellular interactions, we study how the combination of electrical and metabolic coupling generates collective rhythmicity and shapes functional beta cell networks. It turns out that while electrical coupling solely can synchronize the responses, the addition of metabolic interactions further enhances coordination, the spatial range of interactions increases the number of connections in the functional beta cell networks, and ensures a better consistency with experimental findings. Moreover, our computational results provide additional insights into the relationship between beta cell heterogeneity, their activity profiles, and functional connectivity, supplementing thereby recent experimental results on endocrine networks.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Periodicidade , Eletricidade , Exocitose
20.
Biol Sex Differ ; 14(1): 76, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37915069

RESUMO

BACKGROUND: Females have been historically excluded from biomedical research due in part to the documented presumption that results with male subjects will generalize effectively to females. This has been justified in part by the assumption that ovarian rhythms will increase the overall variance of pooled random samples. But not all variance in samples is random. Human biometrics are continuously changing in response to stimuli and biological rhythms; single measurements taken sporadically do not easily support exploration of variance across time scales. Recently we reported that in mice, core body temperature measured longitudinally shows higher variance in males than cycling females, both within and across individuals at multiple time scales. METHODS: Here, we explore longitudinal human distal body temperature, measured by a wearable sensor device (Oura Ring), for 6 months in females and males ranging in age from 20 to 79 years. In this study, we did not limit the comparisons to female versus male, but instead we developed a method for categorizing individuals as cyclic or acyclic depending on the presence of a roughly monthly pattern to their nightly temperature. We then compared structure and variance across time scales using multiple standard instruments. RESULTS: Sex differences exist as expected, but across multiple statistical comparisons and timescales, there was no one group that consistently exceeded the others in variance. When variability was assessed across time, females, whether or not their temperature contained monthly cycles, did not significantly differ from males both on daily and monthly time scales. CONCLUSIONS: These findings contradict the viewpoint that human females are too variable across menstrual cycles to include in biomedical research. Longitudinal temperature of females does not accumulate greater measurement error over time than do males and the majority of unexplained variance is within sex category, not between them.


Women are still excluded from research disproportionately, due in part to documented concerns that menstrual cycles make them more variable and so harder to study. In the past, we have challenged this claim, finding it does not hold for animal physiology, animal behavior, or human behavior. Here we are able to show that it does not hold in human physiology either. We analyzed 6 months of continuously collected temperature data measured by a commercial wearable device, in order to determine if it is true that females are more variable or less predictable than males. We found that temperatures mostly vary as a function of time of day and whether the individual was awake or asleep. Additionally, for some females, nightly maximum temperature contained a cyclical pattern with a period of around 28 days, consistent with menstrual cycles. The variability was different between cycling females, not cycling females, and males, but only cycling female temperature contained a monthly structure, making their changes more predictable than those of non-cycling females and males. We found the majority of unexplained variance to be within each sex/cycling category, not between them. All groups had indistinguishable measurement errors across time. This analysis of temperature suggests data-driven characteristics might be more helpful distinguishing individuals than historical categories such as binary sex. The work also supports the inclusion of females as subjects within biological research, as this inclusion does not weaken statistical comparisons, but does allow more equitable coverage of research results in the world.


Assuntos
Ciclo Menstrual , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Feminino , Camundongos , Animais , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Temperatura , Periodicidade , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...